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A continuous-flow, unstirred reactor (CFUR) is considered in which the reaction 
is purely cubic autocatalysis and in which the exchange of reactants between the reac- 
tor and its reservoir is modelled by linear diffusive interchange terms. The system is 
capable of  supporting two, stable, spatially uniform stationary states. The possibilities 
of initiating travelling waves of permanent form (front waves), in which the concentra- 
tions vary monotonically between these two stationary states is, investigated. It is seen 
that the formation of front waves requires the dimensionless parameter 6 = DA/Ds 
(DA, Ds being the diffusion coefficients of  reactant and autocatalyst, respectively) to 
be such that 6~4,  a result confirmed by numerical integrations of an initial-value 
problem. For  values of 6 larger than this, permanent-form waves are not initiated with 
a more complex structure evolving in the initial-value problem. Here the forward-pro- 
pagating front leaves behind a region in which oscillations in the concentrations of  
both species are observed. These individual oscillations are spatially fixed with the 
region where this oscillatory response is observed propagating backwards into the 
region of spatially uniform concentration. 

1. Introduction 

Travelling waves of reaction form the basis of many complex chemical and biolo- 
gical processes and consequently have received considerable attention. One way of 
studying reaction-diffusion waves experimentally is through the continuous-flow, 
unstirred reactor (CFUR). This is an arrangement whereby a continuous supply of 
reactants can be fed into the system, in a way that does not interfer with the trans- 
port processes by molecular diffusion. A reaction zone, which is usually a gelled 
medium, is contained within impermeable walls at its ends but is also in contact 
with a reservoir from which fresh reactant can be exchanged and into which reac- 
tion products can be removed. The composition of the reservoir can be kept con- 
stant by continuous flow, for example, thus enabling steady states and other 
reaction-diffusion structures to be maintained indefinitely. 

Here we consider a situation in which the reaction within the C F U R  is isother- 
mal and given by purely cubic autocatalytic kinetics, represented by 
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A + 2B --~ 3B, rate kab  2 , (1) 

where a and b are the concentrations of chemical species A and B, respectively, 
and k is the rate constant. We also assume that the reservoir contains reactant A 
and autocatalyst B at the constant concentrations a0 and b0 respectively, with the 
exchange between reactor and reservoir given by linear diffusive interchange, with 
the associated mass transfer coefficient mR. Finally, we take the reactor to be long 
relative to its width, enabling us to limit attention to one space dimension, along the 
length of the reactor, and, in our discussion of the travelling waves that arise in this 
system, for the effects of the ends of the reactor to be neglected. 

The equations describing the reaction and diffusion processes for our model of 
the CFUR are then 

Oa 02a 
O---t = DA ~ x  2 + mR(ao - a) - kab 2 , (2) 

Ob 
0----[ = DB-ff~x2 + mR(bo - b) + kab 2 , (3) 

where Da and D s  are the diffusion coefficients of reactant A and autocatalyst B, 
respectively. To transform eqs. (2), (3) into a simpler form, we introduce the dimen- 
sionless variables variables 

( ka~ ~ 1/2 
a = ao~, b = aob, Yc = ~ ) x, t = (ka2)t .  (4) 

Applying (4) to eqs. (2), (3) gives, on dropping the bars for convenience, 

=: + (5)  
Ot Ox  2 

Ob cO2b 
Ot = Ox 2 + #(3o - b) + ab 2 , (6) 

where the dimensionless parameters are 6 = D A / D s ,  lz = r n R / k ~  and/30 = bo/ao. 
Eqs. (5), (6), augmented by the linear termination step B ~ C (giving the full 

Gray-Scott  kinetic model), or, equivalently, taking different mass transfer coeffi- 
cients for A and B, is essentially the system studied by Pearson and co-workers [1- 
3], Petrov et al. [4], Merkin et al. [5,6] and Merkin and Sadiq [7]. This augmented 
system has been shown to display a very wide range of complex spatio-temporal 
behaviour, including wave and spot replication and extinction [1-3], wave reflec- 
tion at boundaries and wave splitting [4] and travelling wave-induced spatio-tem- 
poral chaos [5-7]. This behaviour stems essentially from the fact that the system is 
capable of sustaining three spatially uniform stationary states, one of which can 
change its stability (through a Hopf bifurcation) with the other two remaining 
stable and unstable respectively. Here the situation is somewhat simpler. The sys- 
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tem given by eqs. (5), (6) can still have up to three spatially uniform stationary 
states, but now two of these remain stable (nodes) while the other is always unstable 
(saddle) for all the parameter values for which they exist. (Where there is just one 
stationary state this is also stable for all parameter values.) 

The implications of this for the reaction-diffusion system (5), (6) is that any tra- 
velling waves of permanent form that arise can be purely front (or autocatalytic) 
waves, in which the reacting medium is converted from one (stable) stationary state 
at its front to the other (stable) stationary state at its rear. It is the existence of these 
travelling fronts that we concentrate mainly on in this paper. We establish that 
there is an upper bound on 6 (61, say) for the existence of these simple front waves. 
We then examine the consequences of this for wave initiation by obtaining numeri- 
cal solutions to an initial-value problem. These show that when 6 < 61, simple front 
waves evolve, the direction of propagation of which depends on the parameters # 
and/30 and (weakly) on 6. When 6 > 6l, a, perhaps unexpected, complex wave struc- 
ture evolves. In this case there is still a propagating front (similar in form to that 
found for 6 < 61) but now there is also an expanding region behind this front in 
which the concentrations undergo (in some cases quite large) oscillatory responses 
which remain fixed in space. We start with a brief review of the kinetics of eqs. (5), 
(6), 

2. Kinet ics  

The kinetics for eqs. (5), (6) are given by the ordinary differential equations 

h = #(1 - a) - ab 2,  (7) 

b = #(/3o - b) + ab z (8) 

in a, b/> 0, with #/> 0,/30/> 0. Eqs. (7), (8) are discussed in detail by Gray and Scott 
[8] where it was shown that the stationary states (ae, be), given by the algebraic equa- 
tion 

b 3 - (1 +/3o)b 2 + I ~ ( b e - / 3 0 )  = 0  (9) 

for bs (say), undergo a hysteresis bifurcation at/30 = 1/8, # = 27/64, bs = 3/8. 
For/30 < 1/8, the system can sustain three stationary states, with a typical plot of be 
against # being shown in Fig. l(a). The upper and lower solution branches b3 and 
bl, respectively, (with corresponding stationary states for A of a3 and al) are both 
stable (nodes), while the middle branch is unstable (saddle-point) in all cases. The 
region of (/30,/~) parameter space in which these multiple solutions exist is shown in 
Fig. l(b). For/30 > 1/8, the be ,-~ ~z curve is monotone (decreasing) with this single 
stationary state being stable (node). Finally, we note that the stationary states 
satisfy the inequalities, 0 ~< as ~< 1,/30 ~< be ~< 1 +/30. 
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Fig. 1. (a) A plot of bs against # for a value of/70 in 0 < fl0 < 1/8. The upper and lower solution 
branches are stable (indicated by the full line), the middle branch is unstable (indicated by the broken 
line). (b) A plot of the critical points for # against/30. The regions of parameter space where eq. (9) has 
a single stationary state, and where there are multiple stationary states are shown. Also shown (by the 
broken line) is a plot of#c against/70 for 6 = 1 (where the travelling wave eqs. (1 2), (1 3) have a solution 

with v = 0). The regions where type I and type II waves are initiated are also indicated. 

For  fl0 = O, the stationary states can be written d o w n  explicitly as 

as=l, bs=O, (10) 

1 :F vq--  4# b, 1 4 - ~  
as = 2 ' - 2 (11) 

W e  n o w  have sufficient informat ion to discuss the travell ing wave  so lut ions  to 
eqs. (5), (6). 
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3. Travell ing waves  

A travelling wave of  permanent  form is a non-negative, non-trivial solution to 
eqs. (5), (6) expressed in terms of  the single travelling co-ordinate y = x - vt ,  where 
v is the constant  wave speed and where, without any loss in generality, we can take 
v/> 0. The solution should also be such that conditions are uniform at both the front  
and the rear of  the wave (i.e. a sy  ~ +oo). This leads us to consider the equations 

6a" + v d  + #(1 - a) - ab E = 0, (12) 

b" + vb' + #(j3o - b) + ab E = 0 

subject to the boundary  conditions 

a ~ a l ,  b ~ b l  a s y ~ o o ;  

(13) 

o r  

a ---. a3, b ~ b3 a s y  ~ - o o ,  (14) 

a ~ a3, b ---* b3 as y ~ oo; 

a ~ a l ,  b ~ b l  a s y ~ - o o ,  (15) 

where, f rom above, b3 > bl. We will refer to waves which satisfy boundary  condi- 
tions (14) as type I waves, and waves which satisfy boundary  conditions (15) as 
type II waves. These are illustrated in Fig. 2. There is also the possibility of  pulse 
waves, which are waves which attain the same conditions at both front  and rear, i.e. 
which satisfy 

a ~ ai, b ~ bi as lyl ~ c~ (i = 1 or 3). (16) 

We start by noting that, when # = 0, eqs. (12, 13) reduce to the s tandard cubic- 
Fisher problem, see, for example, [9-11]. For  6 --- 1, the equat ions  have a simple 
solution [9,11] with wave speed v = l /x/2.  For  6 ~ 1, the equations have to be 
solved numerical ly with results being given in [10] (where an extensive discussion of  
the behaviour  of  the solution is also given). 

We are also able to establish the result that 

a(y )<~l ,  b(y)>~]5o, - o o  < y < c~. (17) 

To do so we assume the contrary,  i.e. there is some range of  y over which 
a(y )  > 1. The boundary  conditions then imply that there must  be (at least) one 
point, Yo (say)  on this range at which a takes a local maximum, with then 

a(yo)  > 1, a ' (yo)  = O, d'(yo)<<.O. 

However,  eq. (12) gives 
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Fig. 2. A schematic representation of type I and type II waves. 

6a"(yo) = # ( a ~ 0 ) -  1) +a(yo)b (yo )  2 > O, 

which gives the contradiction. The inequality for b (y) can be established in a similar 
way. 

We start by considering the case when ~ = 1 (i.e. D s  = DA)  for which travelling 
wave equations can be simplified. 

(a) 6 = 1, D s  = DA 
When eqs. (12), (13 ) with 6 = 1 are added, then by considering the resulting equa- 

tion subject to boundary  conditions (14) or (15), it is s t raightforward to show that  

a + b -  1 +/30. (18) 

Using (18) eq. (13) becomes 

b" + vb' + #(/30 - b) + (1 +/30 - b)b 2 = O. (19) 

I f  we now multiply eq. (19) by b' and integrate, we obtain 

v b a dy = (3b 3 - 4(1 +/3o)b 2 + 6#b - 12#/3o) , (20) 
~ bs 

where bs represents either bl or b3. Eq. (20) shows that we cannot  have pulse waves 
in this case. 
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For  type I waves we then require 

(bl - b3)F(bl, b3;/z,/30) > 0, (21) 

where the function 

V(bl,b3;Iz,/3o) = 3(bl + b3)(b~ + b32) - 4 ( 1  +/30)(b~ + bib3 + b~) 

+ 6/z(bl + b3) - 12#/30 

is symmetric in bl and b3. Hence for type I waves we require F < 0, whereas for 
type II waves, we must have F > 0. We can then expect a curve in/z -,~/3o parameter  
space/z ---/zc (/30), (say) which divides the region of existence of  multiple stationary 
states into regions where type I and type II waves exist. This will correspond to 
F = 0, i.e. to stationary waves, which are solutions ofeq.  (19) with v = 0. For gen- 
eral values of/3o and #, the calculation of this curve has to be done numerically (as 
we do not  have explicit expressions for the bs). This is straightforward to do and a 
graph of#c, plotted against/30, is also shown in Fig. l(b), the regions of existence of  
type I and type II waves are indicated in this figure. 

When there is no B in the reservoir i.e./3o = 0, the solution to eq. (19) can be 
expressed in the form 

b ' = - ~ - b ( 2 b - ( 1  + V/ i - -4#) ) ,  v=--~--~(3x/]--4 # -  1) (22) 

for type I waves (with obvious changes in sign for type II waves). This then gives a 
value of/~c = 2/9 (where v = 0) in this case, with type I waves for 0 ~</~ < 2/9, and 
type II waves for 2/9 < /z  < 1/4. 

(b) General case 
We have identified that there is a value of # = #c, at which the travelling wave 

equations have a solution with v = 0, which divides the parameter space up into 
regions where type I and type II wave exist (both with v > 0). For  general values of  
the parameters this has to be found numerically and the results for/30 = 0 are shown 
in Fig. 3. F rom this figure, we can see that there is an upper bound on 6, 61 (say) for 
both types of  waves exist. For  6 > 61, stationary waves (i.e. waves with v = 0) can- 
not  be formed. We will return below to the question of  the nature of  the solution for 
8 > 81. For/30 = 0, we find that 81 ~ 4.006. (Note that the existence of  multiple 
solutions requires # < 1/4 in this case). 

Further  insights into what types of  waves can be initiated are provided by solu- 
tions to eqs. (12), (13) valid for 6 << 1 and/30 ~- 1 /8 (close to the point where there is 
a hysteresis bifurcation in the stationary states). We start with the former case 

(c)Solutionfor6 << 1, i.e. Da << Ds 
To obtain a solution of  eqs. (12), (13) valid for 6 << 1, we look for a solution by 

directly expanding 
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Fig. 3./zc plotted against 6 for/30 = 0.0 (#c is the value o f #  at which the travelling wave equat ions have 
a solution with v = 0). The regions o f / z  ~ 6 parameter  space where type I and type II waves are 

initiated are indicated, • denotes the value calculated for the case 6 = 0.0. 

a(y; 6) = ao(y) + 6a1~)  + . . .  , 

b(y;6) = b0(y)+  6 b l ( y ) + . . . ,  

V ---~ "130 "4- 6Vl + . . . .  

At leading order, we obtain 

rod  o + #(1 -- ao) - aob~ = O, 

(23) 

(24) 

(25) b'~ + vob'o + u(~o - bo) + aob~o = 0 

subject to boundary  conditions (14), (15) or (16). 
The numerical  solutions shown in Fig. 3 show that eqs. (24), (25) are capable of  

supporting both type I and type II waves. This leads us to look for the value for/zc 
for 6 small, i.e. to look for a solution of eqs. (24), (25) with v0 = 0. In this case, 
eq. (24) gives a0 = #c/(#~ + b2), with eq. (25) then becoming 

bg + ~,cb~ + b----~+#~/z(/30 - b0) = 0 .  (26) 

If  we now multiply eq. (26) by b~, and use b0 ---, bl and b3 as b~ ~ 0, we obtain the 
condit ion that 

, m+b---- ~ ~ - ~ o - b  d b = O  (27) 



M.A. Sadiq, J.H. Merkin / Tra veiling waves 221 

f rom which it follows that  #c is given by the equat ion 

(bl - b3)[1 + -½(b l  + b3)] 

_ v / ~ c [ t a n _ l (  b3 ) ( b l ) ]  - ~  - t a n - I  ~ = 0 .  

Eq. (28) gives an implicit  expression for #c which has to be de termined numerically.  
This  is s t ra ight forward  to achieve and a graph of/~c obta ined f rom these calcula- 
t ions is shown in Fig. 4. Also included in this figure are the regions of/z ~ fl0 param-  
eter space where type I and type II waves are initiated. No te  that  the values of/zc for 

= 0 are very similar to the corresponding values for ~ = 1 (Fig. 1 (b)). This is illus- 
t ra ted by the fact that/z~ = 0.2114 f rom the solut ion for ~ = 0 as compared  to 
/Zc = 2 /9  = 0.2222, for ~5 = 1. 

(d) Solut ion f o r  l3o ~- 1 / 8  
The s ta t ionary states, as given by eq. (9), undergo  a hysteresis bifurcat ion at  

/30 = 1/8 (and as = 3/4,  bs = 3/8, # = 27/64) and here we examine the na ture  of  
the solut ion to the travelling wave eqs. (12), (13) close to this point.  We start  by first 
consider ing the nature  of  the s tat ionary states close to this po in t  and  to do so we 
put  

fl0 = ~ - c ,  0 < ~ < < 1 ,  (29) 

and then  

0,5 
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0,2- 

0.1] 

0 . 0  I I I I I I 

0.0 0.02 0.04 0.06 0.08 0.1 0.12 
P0 

Fig. 4./Zc plotted against/30 for 6 = 0.0. The regions of/1 ~ 80 parameter space where type I and 
type II waves are initiated are indicated. 
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b=]+,l/2S, (30) 
Applying (29), (30) in eq. (9) gives the equation 

B 3 - 3 B + I A = 0  (31) 

at leading order. A graph B plotted against A is shown in Fig. 5, from which we 
can see that there are multiple stationary states for A in the range -2vr2 < A < 2vr2 
with B in the range - v ~  < B < v~. From this it then follows that the curves 
bounding the region of multiple solutions as shown in Figs. 1 (b) and 4 are given 
by 

/ z ~ - ~ - 9 e - t - 2 v ~ e  3 /2+ . . .  a s e = ~ - j 3 0 ~ 0 .  (32) 

The above discussion suggests that to obtain a solution of the travelling wave equa- 
tions valid for e small, we should still apply transformations (30) as well as writing 

= e l / 2 y ,  v = e 1 / 2 V ,  a = 3 + e l / 2 A  (33) 

(with e still given by (29)). Using expressions (30, 33) we obtain, from eqs. (12), 
(13), 

9 ( A + B ) + 3 (  B 2 3 )  e'/2 

- - ~ A  - -~ - 6 A ~ v A ,  e + e3/2~t = O, (34) 

B 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ~t 2 

, 1  - /  

- 2 V 2  - -  - V  2t'2 

2 , / 2  

Fig. 5. A graph of B against A obtained from eq. (31) showing the region of multiple solutions. 
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9 (A + B) + -~ AB + + e 1/2 

( 9 )  + ABE+ B - ~ +  + V / f  E--E  3/2 A B -  - C 2 A = 0  

where primes now denote differentiation with respect to (. 
We now look for a solution ofeqs. (34), (35) by expanding 

A = A0 + £I/2AI + cA2 + . . .  , 

(35) 

B = Bo + el/2B1 + eB2 + . . .  , 

V = Vo + el/2V1 + . . . .  

At leading order we obtain 

Ao+ Bo = 0  

and, on using (37), at O(e 1/2) 

A I + B I + I = 0 .  

(36) 

(37) 

(38) 

At O(e) we obtain, on using expressions (37), (38), 

1-9~ (A2 + B2)=  - 6 / ~  - Voffo + B 3 - 3 B o  +~- (39) 

from eq. (34) and 

A (40) (A2 + ~2) = -~0'  - r0~0 + ~03 - -32 ~0 + 

from eq. (35). The compatibility equations (39), (40) then give the equation 

(4 - 6)/~ + 3 VoK0 - 3 - ~ B o + B  3 = 0 .  (41) 

The reaction term in eq. (41) is the same as eq. (31) for the stationary states and 
the boundary conditions to be applied are that B0 approaches one of the solutions 
of eq. (31) as I¢1 ~ ~ .  It is readily established (using a similar argument to that 
given above for the case 6 --- 1) that eq. (41) does not admit pulse wave solutions 
(i.e. Bo must attain different values as ¢ ~ o~ and as ( ~ -oo).  

Clearly eq. (41) cannot have a solution which satisfies the required form for the 
boundary conditions when 6 = 4. We can also establish that such a solution is also 
not feasible for 6 > 4. To do so we linearize the equation about a (temporally stable) 
stationary state of the equation (Bs, say) putting B0 = Bs + 13, where 13 << B~. This 
results in the linear equation 
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(4 - 6)/3" + 3 V o / 3 '  - 9(B 2 - ½)/3 = 0. (42) 

Now, from Fig. 5 we can see that the term (B 2 - 1) > 0 and using this, it is readily 2 
established that eq. (42) cannot have a solution (with i5 > 4) which approaches zero, 
and hence a solution in which B0 approaches B,, as both ( ~ oe and as ( ~ -oo .  

This suggests that for 6 > 4 simple autocatalytic front waves, in which the con- 
centrations change monotonically from one (stable) state at their front to another 
(stable) state at their rear, will not be initiated and that a more complex wave struc- 
ture may be expected. (This will be seen when we describe the results obtained from 
numerical integrations of an initial-value problem described below.) This value for 
6, obtained from an analysis for (~ -/30) << 1 is in line with the value of  61 already 
obtained for the case/30 = 0, (the slight difference between the two values could well 
be accounted for by numerical errors). The (close) agreement between these two 
values also suggests (though we are unable to establish it rigorously) that  61 "~ 4 for 
general values of/30 < 1/8. 

Finally, we note that the stationary wave solutions of eq. (41), which differenti- 
ate between type I and type II waves, correspond to taking A = 0, with #c then being 
given by 

~c"o~47--9e+O(£ 2) ase--*0. (43) 

The curve given by (43) emerges from the hysteresis point and bisects the two curves 
bounding the region of multiple solutions given by expression (32). 

We now examine the implications of our results for travelling waves by consider- 
ing an initial-value problem. 

4. Ini t ia l-value problem: Numerical solutions 

Here we consider numerical solutions to an initial-value problem given by 
eqs. (5), (6) on - o e  < x < oe, t > 0, subject to the initial conditions that 

a = a 3 ,  b = b 3  f o r - o e < x < 0 ,  

a = a l ,  b = b l  f o r 0 < x < c ~ .  (44) 

Thus type I waves will propagate forwards (i.e. in the direction of  x increasing) 
while type II waves will propagate backwards (into x < 0). 

The numerical method uses to solve eqs. (5), (6) subject to (44) is based on the 
Crank-Nicolson method,  with Newton-Raphson iteration being used to solve the 
nonlinear finite-difference equations that arise at each time step. The computat ions 
were performed on a sufficiently large domain to allow travelling waves of  perma- 
nent form to be set up, this being moni tored by calculating their wave speed and 
noting that  it had reached to a constant value (to within the overall numerical accu- 
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racy). No-flux boundary conditions were applied at the ends of the computational 
domain. This method has already been used successfully on a series of  similar 
initial-value problem, in, for example, [7,12,13]. 

We obtained numerical solutions for a range of  values of/7,/z and/30, the results 
are displayed by plots of  xw (the position of the wave) against t. We started with 

= 1 where we have already identified values of#c that differentiate between type I 
and type II waves. For/30 = 0, #c = 2/9 and the initiation of  type I waves for/z </z~ 
and type II waves for/z > #c is confirmed by the results shown in Fig. 6(a). For 
/30 = 0.05, #c --- 0.2858 and again we can see (Fig. 6(b)) the existence of both type I 
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Fig. 6. Plots of wave position xw against t for 6 = 1.0 a n d  a range of values of /z  with (a)/~0 = 0,0, 

(b) ~ = 0.05. 
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a n d  type  II  waves  in the appropr ia te  ranges of/~. A typical  wave  profi le  (p lo t ted  
af ter  it h a d  reached  p e r m a n e n t  form)  (for/30 = 0.0, # = 0.1) is shown in Fig. 7(a). A 
similar  s i tua t ion  holds  for  6 < 1 as can be seen in Fig. 8, where  we plot  xw ,-~ t for  
var ious  values o f #  and  for  6 = 0.2, ~0 = 0.0 and  fl0 = 0.05. A typical  wave  profi le  
for  6 = 0.2, fi0 = 0.05, # = 0.2 is shown in Fig. 7(b). All the wave fo rms  for  6 < 61 
appear  to  have  the simple s t ructure  i l lustrated in Fig. 7, wi th  m o n o t o n e  var ia t ions  
in the concen t ra t ions  between the stable s t a t iona ry  states at  the f ront  and  rear  o f  
the waves.  

W h e n  we consider  values 6 > 61, as are i l lustrated in Figs. 9(a), 9(b) for  6 = 5.0, 
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Fig. 7. Asymptotic wave profiles obtained from numerical integrations of the initial-value problem 
for (a) 6 = 1.0, ~0 = 0.0, # = 0.1, (b) 6 = 0.2,/~0 = 0.05, # = 0.2. 
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Fig. 8. Plots of wave position xw against t for 6 = 0.2 and a range of values of/z with (a) ~0 = 0.0, 
(b) ~0 = 0.05. 

we find that  there is still a propagating front, though now only type I waves (i.e. pro- 
pagat ion in the positive x-direction) being initiated. The velocity of  these waves 
quickly approaches a constant  value and in this respect they are similar to the waves 
seen for 6 < 61. However,  when we examine their wave structure in more  detail (as 
in Fig. 9(c) for # = 0.235, 6 = 5.0, fl0 = 0.0, plotted at t = 450) a more  complex 
behaviour  is observed. Now the wave profiles are no longer monotone,  with the 
concentrat ions undergoing oscillatory responses in the region behind the propagat-  
ing front, with this region of  oscillatory behaviour expanding backwards into the 
region x < 0. These oscillations in the concentrat ion profiles are not  especially 
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Fig.  9. P l o t s  o f  w a v e  p o s i t i o n  xw a g a i n s t  t fo r  6 = 5.0 a n d  a r a n g e  o f  va lues  o f  # w i t h  (a) /30 = 0.0, 
(b)/30 = 0.05, (c) w a v e  prof i les  a t  l a rge  t i m e  (t  = 450) for  6 = 5.0,/3o = 0.0, # = 0.235. 

m a r k e d  for 6 = 5 (a value close to 61 -~ 4) but  become m u c h  more  p ronounced  for 
larger values ofcS, as can be seen in Fig. 10, (for ~5 = 50.0) where we show wave pro- 
files p lo t ted  at large times for # = 0.2 and/3o = 0.0 (Fig. 10(a)) and/3o = 0.05 
(Fig. 10(b)). These figures clearly show the existence of  a region behind the for- 
ward-propaga t ing  front  where bo th  concentra t ions  a and b have an oscil latory 
behaviour .  The  oscillations in a and especially in b can be large with values of  b 
a t ta ined in the wave being more  than  double the s ta t ionary state values at the rear 
of  the wave. 
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Fig. 9. (Continued.) 

The expansion of this oscillatory region back into x < 0 can be seen in Fig. 11, 
where we give grey-level concentration plots ofb for the two cases taken for Fig. 10. 
These figures show the forward-propagating front (seen as the light-shaded line 
with positive slope) with this rapidly attaining a constant velocity. However, it is 
the structure at the rear of this front that is of most interest. Here we see the spatial 
oscillations in the concentration being formed and that these remain stationary 
with each individual peak response (say) remaining fixed in space after it has been 
formed. The whole region where this oscillatory behaviour is initiated can be 
observed propagating backwards into the region where b = b3 (and temporally 
stable) creating (with the forward-propagating front) an expanding region of oscil- 
latory response. The spatial oscillations in concentrations behind the front take a 
simple form after the initial transient period of their formation. We did not find 
more complex oscillatory behaviour in any of our numerical integrations (for cases 
not reported here) through these oscillations were seen for a wide range of values of 
the parameters and appear to be a generic feature of our reaction-diffusion system, 
as does the stationary nature of the individual oscillations. 

The development of these standing waves in our model is related to Turing (or 
diffusion-drive instability), see, for example, Murray [14], whereby an otherwise 
stable, spatially uniform stationary state can become unstable if the diffusion coef- 
ficient of the autocatalyst (or activator species) is much less than that of the sub- 
strate (or inhibitor species), as is the case here. This aspect will be explored in more 
detail in a subsequent paper. 

Finally, we undertook an extensive numerical investigation of our initial-value 
problem, with boundary conditions (44) ammended appropriately, to see if we 
could trigger pulse waves. We were unable to initiate any of these waves numeri- 
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Fig. 10. Wave profiles obtained from numerical integrations of the initial-value problem plotted at 
large time for 6 = 5.0, # = 0.2 and (a) fl0 = 0.0, (b) fl0 = 0.05. 

cal ly and  as we have  also been able to establish tha t  pulse waves c a n n o t  occur  for  
var ious  l imit ing values o f  the pa ramete rs  we m a y  conclude tha t  such waves appear  
n o t  to  be genera ted  in this system (or i f  they  are then  only  over  a very  res t r ic ted 
pa rame te r  range).  

5, C o n c l u s i o n  

We have  cons idered  a model  for a C F U R  in which the react ion  is given pure ly  
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Fig. 11. Grey-level plots of b for 6 = 50.0, # = 0.2 and (a) ~0 = 0.0, (b) ~0 = 0.05. In these figures 
the darker the value, the smaller the value ofb. 

by cubic autocatalysis and in which the exchange of  reactants between the reactor  
and its environment  is modelled by a diffusive interchange with the same mass 
transfer coefficient for both reactant  A and autocatalyst  B. We have seen that  this 
system is capable of  supporting two, stable, spatially uniform stat ionary states. We 
have examined the possibility of  initiating reaction-diffusion travelling waves of  
permanent  form in this model  for a C F U R  and found that  it is possible to do so pro- 
vided the parameter  6 (the ratio of  the diffusion coefficients of  A and B) is suffi- 
ciently small. A value 61, such that  permanent  form travelling waves can be formed 
for 6 < 61, has been identified and our calculations suggest 61 -~ 4. This was con- 
f i rmed by our numerical  integrations of  an initial-value problem. 

For  values of  6 > 61 (i.e. DA ~>4DB) travelling waves of  permanent  form do not 
evolve as the large time structures to our initial-value problem, with now more  com- 
plex waves structure being initiated. The main (and novel) feature of  this structure 
is the region in which spatial oscillations in the concentrat ions of  both  reactant  A 
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Fig. 11. (Continued.) 

and autocatalyst B are set up. These individual oscillations are of simple form and 
remain stationary in space but the region of the oscillatory response expands back- 
wards at the rear of the forward-propagating front. 

This feature, whereby stationary longitudinal oscillations in concentration are 
formed at the rear of a propagating front, is apparently new to reaction-diffusion 
systems with simple autocatalytic kinetics. It appears to be different to the trans- 
verse instabilities, leading to transverse oscillations in concentration, which have 
been predicted theoretically [15] for cubic autocatalysis and confirmed experimen- 
tally for the iodate-arsenous acid reaction [16]. There are several differences 
between the present case and these transverse oscillations, the main one being that 
the transverse oscillations in concentration are stationary relative to the propagat- 
ing front, which suggests they are generated by a different mechanism. The only 
real similarity with the present case is that a value of6 > 1 is required in both cases. 
Very recently Davidson et al. [17,18] have observed the occurrence of stationary 
spatial oscillations in a reaction-diffusion model for the spread of fungal mycelia. 
Their model has many similarities with the present model, as given by eqs. (2), (3) 
or (5), (6), and they also report that complex stationary spatial structures (their 
numerical results are obtained for two-dimensional geometry) are formed provided 
the ratio of the diffusion coefficients of the substrate and activator is sufficiently 
large. 
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